SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS
- Jorge López Ávila
- hace 2 años
- Vistas:
Transcripción
1 SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos del segmento y se consideran parte de este. A B Así en la figura, para la recta l, AB es un segmento cuyos extremos son los puntos A y B. En algunas ocasiones será importante tener en cuenta el sentido de un segmento rectilíneo. Por ejemplo, en nuestra figura, podemos considerar dos tipos de segmentos: un segmento dirigido o un segmento no dirigido. Un segmento dirigido es aquel al que se le x. Así diremos que el segmento AB está dirigido de A a B, indicando primero al punto A llamado origen o punto inicial y luego al punto B llamado extremo o punto final. Se puede obtener el mismo segmento, pero ahora dirigiéndolo de B a A; y entonces B será el origen y A el punto final, su notación estaría dada por BA. O sea que para indicar el sentido de un segmento dirigido se escribe primero el origen o punto inicial y luego su extremo o punto final. A pesar de que las longitudes de los segmentos dirigidos AB y BA son iguales, será necesario especificar que si un segmento dirigido en un sentido es considerado positivo; entonces ese mismo segmento en sentido contrario será negativo, lo que podemos expresar como: AB= -BA Si consideramos que el segmento AB tiene sentido positivo. Un segmento no dirigido es aquel al que no se le considera un sentido y debido a esto se puede expresar en cualquier orden. Esto es, un segmento dirigido siempre se le considera como positivo cualquiera que sea su sentido, por lo que se puede expresar de la siguiente manera: no
2 AB= BA Si el segmento AB se considera no dirigido. DISTANCIA ENTRE DOS PUNTOS DEL PLANO La distancia entre dos puntos ubicados en un sistema coordenado rectangular se determina por la longitud del segmento que los une. Supongamos que A(x 1, y 1 ) y B(x, y ) son dos puntos situados en el plano como se muestran en la figura: La distancia que hay entre estos dos puntos es la longitud del segmento que los une y se determina a través da la siguiente fórmula: d = (x x 1 ) + (y y 1 ) La distancia entre dos puntos algunas veces la denotaremos mediante la letra d minúscula y otras veces mediante la expresión d(a, B), donde se indican entre paréntesis los puntos a los cuales se les calcula su distancia. Esta notación es ideal cuando se involucran cálculos de distancias entre otros puntos en un mismo plano. Ejemplo: Calcule la distancia entre los siguientes puntos del plano A( 1, 3) y B( 5,6). Solución: Antes de utilizar la fórmula, se recomienda etiquetar las coordenadas de los puntos de la siguiente manera, esto con el fin de evitar confusiones en la sustitución: A(x 1, y 1 ) B(x, y ) O bien: x, y, x 1, y 1 Datos: A( 1, 3) y B( 5, 6) 1 = -1 Y 1 = -3 = -5 Y = 6
3 Fórmula: Sustitución: Resultado: d = (x x 1 ) + (y y 1 ) d = ( 5 1) + (6 3 ) d = ( 5 + 1) + (6 + 3) d = ( 4) + (9) d = d = 97 d = d = NOTA: Las coordenadas también se hubieran podido enmarcar como A( 1, 3) y B( 5, 6), hacer la sustitución en este orden y el resultado no se alteraría. Se te invita a verificarlo. Además se te sugiere utilizar papel milimetrado para comprobar gráficamente el resultado. PERÍMETRO Y ÁREA DE UN TRIÁNGULO EN EL PLANO Perímetro: Para calcular el perímetro de un triángulo en el plano cartesiano bastará con conocer las coordenadas de sus vértices. Así aplicando la fórmula para determinar la distancia entre dos puntos, se calculan las longitudes de cada uno de los lados del triángulo; luego el perímetro se obtiene sumando esas longitudes. Área: Para encontrar el área de un triángulo trazado en un sistema coordenado rectangular, emplearemos la Fórmula de Herón; ya que esta fórmula está dada en términos del perímetro y las longitudes de los lados del triángulo. Esta fórmula es muy práctica y no requiere conocer el valor de alguna de las alturas del triángulo. La fórmula está dada mediante la siguiente expresión: A = s(s a)(s b)(s c) donde A : representa el área del triangulo a, b, c : son las longitudes de los lados; y s : es la mitad del valor de su perímetro, esto es: s = a + b + c
4 Ejemplo: Calcular el perímetro y área de un triángulo cuyos vértices se encuentran en los siguientes puntos del plano coordenado: A(,5), B(4, 3) y C( 3, ). (Véase dibujo) Solución: Calculemos las longitudes de cada uno de los lados del triángulo: x 1, y 1 x, y a) Primero del punto A(, 5) al B(4, 3), d A, B = (4 ) + ( 3 5) d A, B = () + ( 8) d A, B = d A, B = 68 = 8.4 x 1, y 1 x, y b) Del punto B(4, 3) al punto C( 3, ) d B, C = ( 3 4) + ( 3 ) d B, C = ( 7) + ( + 3) d B, C = 49 + (1) d B, C = 50 = 7.07 x 1, y 1 x, y c) Finalmente del punto C( 3, ) al punto A(, 5) d C, A = ( 3 ) + (5 ) d C, A = ( + 3) + (5 + ) d C, A = (5) + (7) d C, A = d C, A = 74 = 8.60 Así el perímetro del triángulo está dado por la suma de estas longitudes: P = = 3.91
5 Mientras que el área se obtiene mediante la fórmula: A = s(s a)(s b)(s c) Tomandos = 3.91 = 11.95,a = 7.07, b = 8.60,c = 8.4 y sustituyendo A = 11.95( )( )( ) A = 11.95(4.88)(3.35)(3.71). A = = 6.9 DIVISIÓN DE UN SEGMENTO EN UNA RAZON DADA El problema que se plantea ahora es cómo dividir a un segmento en una razón dada. Una razón se interpreta como el cociente de dos números enteros, esto es: r = x, y 0. y Para comprender mejor el problema, supongamos que se nos pide dividir al siguiente segmento de recta en la razón r = 1, En cuántas partes iguales dividiríamos al segmento? P 1 P Efectivamente, la razón un medio implica dividir a dicho segmento en tres partes iguales de la siguiente manera: P 1 P Para que de este modo, P sea el punto que divida al segmento en la razón r = 1. Es decir, que la razón r en la que el punto P divide al segmento P 1 P, está dada por: r = P 1P, r 1 PP De donde se pueden observar tres casos importantes, relacionados con la ubicación del punto P en el segmento: P a) Si el punto P está situado dentro del segmento, entonces la relación r = P 1P puesto que los segmentos P 1 P y PP estarían dirigidos en el mismo sentido. PP es positiva; P 1 P P
6 a) Si el punto P estuviera situado en la prolongación del segmento, a uno u otro lado del mismo, la relación r = P 1P es negativa; ya que los segmentos estarían dirigidos en sentidos PP opuestos. P P 1 P b) Por último, si el punto P divide al segmento en dos partes iguales entonces la relación r = P 1P PP = 1 y se tendría el caso en el que P es exactamente el punto medio del segmento P 1 P. P 1 P P c) Según con lo explicado anteriormente En qué razón divide el punto Q al segmento P 1 P? P 1 P Q P Esta idea de encontrar el punto que divide a un segmento en una razón dada se puede trasladar a un sistema coordenado rectangular. Esto es, si consideramos a un segmento trazado sobre un plano cartesiano como el que se muestra en la figura: Entonces los puntos que delimitan al segmento de recta considerado son P 1 (x 1, y 1 ) y P (x, y ); luego las coordenadas del punto P(x, y) que dividen al segmento en la razón dada r, están dadas mediante las siguientes expresiones: x = x 1 + rx 1 + r, y = y 1 + ry 1 + r con r 1. Para el caso particular, que r = 1, entonces estaremos hablando del punto medio del segmento y las fórmulas se reducen a: x = x 1 + x, y = y 1 + y Ejemplo 1. Calcular el punto de división de un segmento cuyos extremos son los puntos A, y B(4,5) en la razón r =.
7 Solución: Antes de hacer las sustituciones en la fórmula, se recomienda etiquetar las coordenadas de los puntos: x 1, y 1 x, y A(, )yb(4, 5) Si denotamos al punto de división mediante la letra C entonces sus coordenadas son: x = x 1 + rx 1 + r = + ()(4) 1 + x = = 6 3 = y = y 1 + ry 1 + r = + ()(5) 1 + y = = 1 3 = 4 Es decir, el punto que divide al segmento dado en la razón r = es: C(,4) Ejemplo.Calcular el punto medio para el segmento dado en el ejemplo anterior. Solución: Si ahora denotamos al punto medio mediante la letra M entonces, sus coordenadas son las siguientes: x = x 1 + x y = y 1 + y = + 4 = + 5 = = 1 = 7 = 3.5 Esto es, el punto que divide exactamente en dos partes iguales al segmento del ejemplo anterior es: M(1,3.5), gráficamente:
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
TEMA N 2 RECTAS EN EL PLANO
2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración
ax 2 +bx+c=0 ax 2 +bx=0 ax 2 +c=0 ax 2 =0 SESIÓN 2. Ecuaciones cuadráticas o de segundo grado.
SESIÓN. Ecuaciones cuadráticas o de segundo grado. Comenzamos con la definición de ecuación de segundo grado. Ejemplos: 3y-y = 3x -48= Son ejemplos de ecuaciones de segundo grado, pues el mayor exponente
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
Ejercicios Resueltos
Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4
Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 25. El número 2 x es la mayor potencia entera de 2 entre las que tienen nueve dígitos en base 10, y sus nueve dígitos son distintos. Usando que
5. POLÍGONOS. 5.1 Definición y notación de polígonos
5. POLÍGONOS 5.1 Definición y notación de polígonos Un polígono es una figura geométrica limitada por segmentos de recta denominados lados, donde el extremo de un segmento es el origen del otro. E D Etimológicamente,
16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.
TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.
5 DIVISIÓN DE POLINOMIOS. RAÍCES
EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2
Cálculo vectorial en el plano.
Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
Proporcionalidad geométrica
TEMA 9: Proporcionalidad geométrica INTRODUCCIÓN: THALES DE MILETO Thales, filósofo, astrónomo y matemático griego nació en Mileto en el año 624 a. de C. y murió a la edad de 78 años durante la quincuagésima
Matemáticas I: Hoja 1
Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
LECCIÓN 9 5 PROBLEMAS RESUELTOS
LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en
a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo
Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:
1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula
PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 10º
COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia 25 Mes 03 Año 2015 META DE COMPRENSIÓN: La estudiante desarrolla comprensión sobre las características de localización de objetos geométricos en sistemas
UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
UNIDAD IV ÁREAS DE FIGURAS PLANAS
UNIDAD IV ÁREAS DE FIGURAS PLANAS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica las áreas de figuras planas, volumen y superficie. CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
www.matesxronda.net José A. Jiménez Nieto
NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos específicos:. Recordarás
operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
GEOMETRÍA ANALÍTICA EN EL PLANO
GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante
PRÁCTICO: : POLINOMIOS
Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en
Tema 6 ENTRE TRIÁNGULOS TE VEAS
Tema 6 ENTRE TRIÁNGULOS TE VEAS Aprendizajes esperados: Resuelve problemas geométricos que implican el uso de las características y propiedades de los triángulos y cuadriláteros, para calcular el perímetro
TRIÁNGULOS. TEOREMA DE PITÁGORAS.
TRIÁNGULOS. TEOREMA DE PITÁGORAS. Un triángulo ABC es la figura geométrica del plano formada por 3 segmentos llamados lados cuyos extremos se cortan a en 3 puntos llamados vértices. Los vértices se escriben
LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA
LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA Definimos una línea recta como una sucesión infinita de puntos consecutivos que se extienden en una misma dirección. Ahora, nuestros esfuerzos
La circunferencia y el círculo
La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.
Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.
Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,
Tema 10. Geometría plana
Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
Y qué pasaría si? Investiga con GeoGebra José Luis Álvarez García
Investigando con cuadriláteros 1.1 El paralelogramo de Varignon Si unimos los puntos medios de los lados de un cuadrilátero cualquiera obtenemos un paralelogramo? Compruébalo con GeoGebra Selecciona la
EJERCICIOS RESUELTOS DE TRIGONOMETRÍA
EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia
Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas
Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,
Trigonometría, figuras planas
El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
PROPORCIONALIDAD. FIGURAS SEMEJANTES
TEMA PROPORCIONALIDAD. FIGURAS SEMEJANTES. FECHA SIRVE PARA: - Estudiar figuras semejantes; - Estudiar el concepto de proporcionalidad; - Introducir conceptos teóricos a través de la geometría; -Introducir
Trabajo Práctico N 1: Números enteros y racionales
Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0
N = {1, 2, 3, 4, 5,...}
Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus
GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE
Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio
Lección 10: Representación gráfica de algunas expresiones algebraicas
LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió
Geometría en una retícula
Geometría en una retícula Alumnos de ESTALMAT-Andalucía Pascual Jara X Concurso Ciencia en Acción. Granada-2009 Contenido Recubrimientos del plano con figuras reticulares Actividades en una retícula El
1. Ejercicios 3 ; 7 4 6, 270 75, 28
1. Ejercicios 1. Ordena de menor a mayor los siguientes números racionales y represéntalos en una recta numérica: 9 4 ; 2 3 ; 6 5 ; 7 3 ; 7 4 2. Determina, sin hacer la división de numerador por denominador,
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
Área de paralelogramos, triángulos y trapecios (páginas 314 318)
NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de
Ing. Ramón Morales Higuera
MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales
POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las
POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,
VALOR ABSOLUTO EN LA RECTA NUMÉRICA
VALOR ABSOLUTO EN LA RECTA NUMÉRICA 1 CONTENIDO 1. Distancia entre dos puntos. 2. Punto medio. 3. Valor Absoluto. 4. Ecuaciones e Inecuaciones con valor Absoluto 2 Concepto de distancia entre dos puntos
REACTIVOS MATEMÁTICAS 3
REACTIVOS MATEMÁTICAS 3 1.- Una es una igualdad en la cual hay términos conocidos y términos desconocidos. El término desconocido se llama incógnita y se representa por letras. a) Literal. b) Ecuación.
Ecuaciones. 2x + 3 = 5x 2. 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. 2x + 2 = 2 (x + 1) 2x + 2 = 2x + 2 2 = 2. x + 1 = 2 x = 1
Ecuaciones Igualdad Una IGUALDAD se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. Cierta 2x + 2 = 2 (x + 1)
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
MATEMÁTICA CPU Práctica 1 NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO
MATEMÁTICA CPU Práctica NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8
PARA EMPEZAR. Un cuadrado tiene de lado x centímetros. Escribe la expresión algebraica correspondiente a su área.
4 POLINOMIOS PARA EMPEZAR Un cuadrado tiene de lado x centímetros. Escribe la expresión algebraica correspondiente a su área. Expresión algebraica: A x Cuáles de las siguientes expresiones algebraicas
PROGRAMACIÓN LINEAL. 1. Introducción
PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas
3.- LOS NÚMEROS FRACCIONARIOS
3.1 Las fracciones. 3.- LOS NÚMEROS FRACCIONARIOS Una fracción es la representación de un reparto, y la utilizamos comúnmente más de lo que parece, por ejemplo: en la compra, cuando decimos medio kilo
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril
VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:
VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen
Ejemplo 1. Ejemplo introductorio
. -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
Sistemas de ecuaciones
6 Sistemas de ecuaciones Objetivos En esta quincena recordarás la resolución de sistemas de ecuaciones y aprenderás a resolver también algunos sistemas de inecuaciones. Cuando la hayas estudiado deberás
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones
TEMA 8 GEOMETRÍA ANALÍTICA
Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,
EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de
EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)
ESTALMAT-Andalucía Actividades 06/07
ACTIVIDAD 1. NÚMEROS RACIONALES esto? a) Efectúa las divisiones 1/3, 1/5, 1/7, 8/2. Son exactas? Se empiezan a repetir las cifras del cociente en algún momento? Cuándo sucede b) Sin efectuar 15/13, di
Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.
Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Si ningún alumno hace algún comentario, el profesor pregunta si están mirando los lados del octágono.
65 7) Prisma octagonal. Al iniciar la clase, el profesor coloca las ligas del geospacio, ante todos los alumnos, o solicita que algunos de ellos lo hagan, mientras él los dirige. Ya formado el prisma octagonal,
UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN
86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )
Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.
Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
Sistemas de ecuaciones
CUADERNO Nº 6 NOMBRE: FECHA: / / Sistemas de ecuaciones Contenidos 1. Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Sistemas de ecuaciones lineales Clasificación de sistemas 2. Métodos
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
1. Sistemas lineales. Resolución gráfica
5 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o
POLÍGONOS. α3 α 4 α 5. α 7 α 6. 1. Definición. Sean: A 1, A 2,...A n, n distintos puntos del plano. Trazamos los segmentos: A 1A 2,
A 7 A 6 A 8 α 7 α 8 α A 5 α 6 A α α α α 5 A A A Un agricultor contrata a una compañía constructora para que realice el cálculo del área de un terreno que se encuentra en una explanada y que desea adquirir.
PUNTO DE DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA. El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela.
PUNTO DE DIVISIÓN DE UN SEGMENTO EN UN RZÓN DD El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela. Cómo se haría para dividir el lado en partes iguales, sin
APÉNDICE E. Cálculo de la capacidad volumétrica del sitio. E.1 Cálculo de áreas
Apéndices 79 APÉNDICE E Cálculo de la capacidad volumétrica del sitio E.1 Cálculo de áreas El área de cualquier figura que se haya levantado puede calcularse a partir de:? Las anotaciones de campo? El
Regla general: Al número de la posición se multiplica por dos y al resultado se le resta dos. Sucesión
ACTIVIDAD 2 Organizados en equipos realicen lo que se indica a continuación. 1. El siguiente esquema representa lo que realiza una máquina al introducir las posiciones de los primeros cinco términos de
Los conjuntos de números Q, IR y C verifican siempre que la suma y el producto de dos elementos
Polinomios Introducción. Nociones básicas Los conjuntos de números Q, IR y C verifican siempre que la suma y el producto de dos elementos del conjunto es otro elemento del conjunto, es decir la suma o
Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor
Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +
TRIÁNGULO DE SIERPINSKI
TRIÁNGULO DE SIERPINSKI El matemático polaco Waclav Sierpinski (188-1969), construyó este en 1919 del modo siguiente: Paso Inicial (0): Construimos un equilátero de lado a: Paso 1: Uno los puntos medios
RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.
RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio
Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será, de nuevo, Geogebra.
Más ecuaciones con regla y compás. La ecuación de segundo grado x +ax-a = 0 Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será,
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
martilloatomico@gmail.com
Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com
Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.
Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,
El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.
Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia
SUMA Y RESTA DE VECTORES. GL: Mesa No. Fecha: INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA
UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR ACULTAD DE INORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CÁTEDRA DE ÍSICA ASIGNATURA: ISICA I PRACTICA 2 SUMA
Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas
REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.